support@kaust.edu.sa
+966 (12) 808-3463
logo-black
  • Home
  • Members
    • Current
    • Alumni
  • Publications
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Videos
  • Gallery
  • Enquiries
  • 2024
breadcrumb-bg

Selective interactions between diverse STEs organize the ANT-C Hox cluster

  1. Lab of environmental epigenetics
  2. Publications

 

 

Selective interactions between diverse STEs organize the ANT-C Hox cluster

by Mo Li, Zhibo Ma, Sharmila Roy, Sapna K. Patel, Derrick C. Lane, Carly R. Duffy, Haini N. Cai
Year: 2018 DOI: https://doi.org/10.1038/s41598-018-33588-4

Extra Information

Scientific Reports volume 8, Article number: 15158 (11 October 2018)

Abstract

The three-dimensional organization of the eukaryotic genome is important for its structure and function. Recent studies indicate that hierarchies of chromatin loops underlie important aspects of both genomic organization and gene regulation. Looping between insulator or boundary elements interferes with enhancer-promoter communications and limits the spread active or repressive organized chromatin. We have used the SF1 insulator in the Drosophila Antennapedia homeotic gene complex (ANT-C) as a model to study the mechanism and regulation of chromatin looping events. We reported previously that SF1 tethers a transient chromatin loop in the early embryo that insulates the Hox gene Sex comb reduce from the neighbor non-Hox gene fushi tarazu for their independent regulation. To further probe the functional range and connectivity of SF1, we used high-resolution chromosomal conformation capture (3C) to search for SF1 looping partners across ANT-C. We report here the identification of three distal SF1 Tether Elements (STEs) located in the labial, Deformed and Antennapedia Hox gene regions, extending the range of SF1 looping network to the entire complex. These novel STEs are bound by four different combinations of insulator proteins and exhibit distinct behaviors in enhancer block, enhancer-bypass and boundary functions. Significantly, the six STEs we identified so far map to all but one of the major boundaries between repressive and active histone domains, underlining the functional relevance of these long-range chromatin loops in organizing the Hox complex. Importantly, SF1 selectively captured with only 5 STEs out of ~20 sites that display similar insulator binding profiles, indicating that presence of insulator proteins alone is not sufficient to determine looping events. These findings suggest that selective interaction among diverse STE insulators organize the Drosophila Hox genes in the 3D nuclear space.

Keywords

Homeotic Antennapedia Gene Complex (ANT-C) Insulator Protein Chromatin Loops Long-range Chromatin Looping Enhancer-blocking Assay
logo-white

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • +966 12 8082714
  • amira.eltally@kaust.edu.sa
  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900

    Kingdom of Saudi Arabia

    Floc.23610 (Building 2, Level 3, Area 1, Sea Side

Quick links

Biological and Environmental Sciences and Engineering Division

KAUST Environmental Epigenetics Program

Facebook

© King Abdullah University of Science and Technology. All rights reserved

Privacy Policy
Terms of Use
Loading...