support@kaust.edu.sa
+966 (12) 808-3463
logo-black
  • Home
  • Members
    • Current
    • Alumni
  • Publications
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
    • 2018
    • 2017
    • 2016
    • 2015
    • 2014
    • 2013
  • Videos
  • Gallery
  • Enquiries
  • 2024
breadcrumb-bg

PcG-mediated higher-order chromatin structures modulate replication programs at the Drosophila BX-C

  1. Lab of environmental epigenetics
  2. Publications

 

 

PcG-mediated higher-order chromatin structures modulate replication programs at the Drosophila BX-C

by Federica Lo Sardo, Chiara Lanzuolo, Federico Comoglio, Marco De Bardi, Renato Paro, Valerio Orlando
Year: 2013 DOI: 10.1371/journal.pgen.1003283

Extra Information

. 2013;9(2):e1003283. doi: 10.1371/journal.pgen.1003283. Epub 2013 Feb 21.

Abstract

Polycomb group proteins (PcG) exert conserved epigenetic functions that convey maintenance of repressed transcriptional states, via post-translational histone modifications and high order structure formation. During S-phase, in order to preserve cell identity, in addition to DNA information, PcG-chromatin-mediated epigenetic signatures need to be duplicated requiring a tight coordination between PcG proteins and replication programs. However, the interconnection between replication timing control and PcG functions remains unknown. Using Drosophila embryonic cell lines, we find that, while presence of specific PcG complexes and underlying transcription state are not the sole determinants of cellular replication timing, PcG-mediated higher-order structures appear to dictate the timing of replication and maintenance of the silenced state. Using published datasets we show that PRC1, PRC2, and PhoRC complexes differently correlate with replication timing of their targets. In the fully repressed BX-C, loss of function experiments revealed a synergistic role for PcG proteins in the maintenance of replication programs through the mediation of higher-order structures. Accordingly, replication timing analysis performed on two Drosophila cell lines differing for BX-C gene expression states, PcG distribution, and chromatin domain conformation revealed a cell-type-specific replication program that mirrors lineage-specific BX-C higher-order structures. Our work suggests that PcG complexes, by regulating higher-order chromatin structure at their target sites, contribute to the definition and the maintenance of genomic structural domains where genes showing the same epigenetic state replicate at the same time.
logo-white

"KAUST shall be a beacon for peace, hope and reconciliation, and shall serve the people of the Kingdom and the world."

King Abdullah bin Abdulaziz Al Saud, 1924 – 2015

Contact Us

  • +966 12 8082714
  • amira.eltally@kaust.edu.sa
  • 4700 King Abdullah University of Science and Technology

    Thuwal 23955-6900

    Kingdom of Saudi Arabia

    Floc.23610 (Building 2, Level 3, Area 1, Sea Side

Quick links

Biological and Environmental Sciences and Engineering Division

KAUST Environmental Epigenetics Program

Facebook

© King Abdullah University of Science and Technology. All rights reserved

Privacy Policy
Terms of Use
Loading...